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MODELING THE TEMPORAL RELATIONSHIP OF CASUALTY

REPORTS TO THE OPERATIONAL PROPULSION PLANT EXAM

Robert R. Read and Lyn R. Whitaker*

Abstract

This report applies modern categorical data analysis to the problem of

describing the probability laws of casualty reports of United States ships of

the line in relation to the type of casualty and temporal nearness of the

Operat:onal Propulsion Plant Exam. It sets an example as to how data of this

type are analyzed, to treat questions relating to competing modes of analysis,

and to provide direction in the use of currently available software.

1. INTRODUCTION

This report applies modern categorical data analysis to the problem of

describing the probability laws of the casualty reports (CASREPTs) of United

States ships of the line in relation to the type of casualty (engineering or

nonengineering) and the temporal nearness of the Operational Propulsion

Plant Exam (OPPE). It is postulated that the preparation for the OPPE drains

resources from normal maintenance operations in a way that induces an

increase in the number of casualty reports as the time of the exam approaches.

Also, the number of casualty reports diminishes monotonically with time in

0

This research was supported by course development funds of the Naval
Postgraduate School, Monterey, California.

Avalablty CodesD
'Aval 

and/or

D
11

t SpeQial.



the post exam period as the system recovers from the effect. Further the effect

may be different for engineering and nonengineering casualty reports.

The Navy created the Propulsion Examining Board (PEB) in 1972. It was

tasked with inspecting the propulsion plants of the Navy's surface ships. The

OPPE exam is first conducted approximately fifteen months after a ship has

completed a regular overhaul, and is repeated about every fifteen months

thereafter until the ship again enters the overhaul state. The PEB has the

authority to "tie up" a ship which, in its opinion, has an engineering plant

that is not safe to operate or does not have enough qualified engineering

watch standers to operate it properly. Each fleet, Atlantic and Pacific, controls

its own PEB and there may be differences in policies that affect the results.,

This study is restricted to frigates, destroyers and cruisers in each fleet

possessing a 1200 PSI steam engineering plant. The time period is January

1974 to July 1978, and only those CASREPTs with a C-3 or C-4 readiness code

are considered. The data are extracted from Tables 18 and 19 of the master's

thesis of F. J. Klingseis (1979), who obtained them from CNA. The thesis

mentions other data caveats as well. There are some discrepancies of these

data from those of his Table 16. There is no way to resolve the discrepancies,

since the data are old. Nonetheless we pursue the development. Our goal is

to set an example as to how data of this type are to be analyzed, to treat

questions relating to competing modes of analysis, and to provide direction

'Beginning early in 1992, the inspections for the two fleets will be made
identical.
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in the use of currently available software. Implementation of the methods for

current use is left to others.

The raw data appear in Table 1. It may be viewed as being six

dimensional with

X ilr(1)

representing the frequency count of exactly (r-1) = 0, 1, 2, 3 or mere

CASREPTs in months (s = 1, ..., 6) measured before (i = 1) or after (i = 2) the

date of the OPPE; having beer. typed as engineering (k = 1) or nonengineering

(k = 2); for ships of the class frigates, destroyers, or cruisers (I = 1, 2, 3 resp.);

and belonging to the Atlantic ( = 1) or Pacific ( = 2) fleets. Thus there are 576

cells of counts. A visual inspection of Table 1 is not very revealing. The

number of ships by fleet in each class is treated as fixed by design.

Specifically

Xijki+s = N11  (2)

and these values appear in Table 2. It is important to note that we do iot have

information by individual ships, only the totals for ship class by fleet. This

kind of collapsing is a bit unsettling as much detail is lost.

The first round of analyses are the elementary and naive ones. These treat

the cells as 24 (before/after by two fleets by two casualty types by three ship

classes) separate 4 by 6 (frequency categories by months) contingency tables.

The basic chi-square test for common distribution over the months can be

3



TABLE 1. TWENTY-FOUR 4 x 6 FREQUENCY TABLES OF CASREPTS

ATLANTIC PACIFIC
FRIGATES-BEFORE

Engineering Nonengineering Engineering Nonengineering
16125 26 25 30 36 23 19 17 18 271 28 18 19 20 21 25 28 21 19 19 21 24 27
17 10 7 lo 11-6 19 12 11 15 12 9 .7 101 8114 61 7 f-14 15113 11 96 5 6 f71 2 5 7 7 6k6 9H._4t _ 4 6 3 44

5 -5 2 0 6 6 9 4 2 1 9 51 31 4 51 21 41 5 6 0

FRIGATES-AFTER
Engineering Nonengineering Engineerin Nonenineering

20 27283427 29 21 24 2221 23 27 20 17 20 20 25 23 19 17123 16 22 25
16 12 10 5 14 6 9 11 11 13 12 7 11 13 13 8 10 9 11 11 6 13 6 12

3 5 3 2 3 7 11 5 ± 5 65 7 3 3 9 2 5 791 91 6, 6 25_I-_ 317 11 5i61_ 0'3' 3 0 2 _ 5 3 5 74 3 3 3 3 2 5 61

DESTROYERS-BEFORE
Enineering Nonengineering , Engineering Nonengineering

13 16 17116 18123110 Il 8 16 12 13 8 7 11 10 13 13 11 7 11 10 11 11
8 91 3 7 4 310 9 7 5 6 7 71 412 1 1 5 5 1 3 3
4 1 1 21 0 5 5 8 4 7 2 41 31 21 211 2. 1 31 3 1 1

4 3 1 5 5 3 4 4 6 4 4 7 2 0 0 4 2 3 0 5 3 f 3 3

DESTROYERS-AFTER
Engineering Nonengineering Engineering Nonengineering

15 22 23 20 21 25 10 14 12 11 18 16 12 6 11 9 6 10 101 6 10 7 12
9 2 6 5 6 1 12 9 8 11 7 5 3 4 4 3 7 6 4 5 5 1 3 1
1 3 0 3 1 23 4 4 3 3 4 4 5 1
42 I I 2 1 1 1 2 I 01 31 5 3 3 4

CRUISERS-BEFORE
Engineering Nonengineering En ineering Nonengineering

5 6 6 5 7 7 4 3 41 4 4 5 3 4 31 5 5 4 5 6 7 9 5
10 L 0 1 0 1 11 0 2 2 3 5 2 5 3 2 1 5 4 2 1 1 3
1 1 0 3 01 1 0 1 1 1 0 0 2 1 2 2 0 1 1 0 0 0 1

0 0 1 4 31 1 0 22 H00 0

CRUISERS-AFTER
Engineering Nonengineering Engineering Nonengineering

4 41 747 6 2 3 2 3 2 4 8 8 71 8 7 6 4 3 3 6 4 6
3 31 _1 2 4 12 2 2 2 1 2 L 0 2 3 4 5 1 3 4
0 101 0 1 2 0 2 01 010 3 1 2 2 1 1 0
1 0 0 1 2 3 22 2 00 1101 1 1 0 2 2 0
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accepted. It is also true that 24 separate loglinear models which treat

themonths as ordinal data provide equally acceptable fits to the data.

Moreover, the latter model exhibits the monotone change in frequency of

casualties as originally hypothesized. These studies are contained and

discussed further in Section 2 following this introduction. The main body of

the report appears in Section 3 where a modem loglinear model is selected to

describe the entire six dimensional data set. It is shown there that any

reasonable loglinear model must include the casualty count by month

interaction term.

Section 4 contains another model building effort based upon a

specialized collapsing of the original data set. It provides some rather

interesting contrasts. It is used largely for a logit analysis of the engineering

versus nonengineering CASREPTs. The results are summarized in Section 5.

An annotated SAS code for the developments in Section 3 i6 presented in

Appendix A. The details of fitting censored Poisson and Geometric

distributions to the 24 separate frequency tables appear in Appendix B.

TABLE 2. NUMBER OF SHIPS BY CLASS AND FLEET (Ni1)

FF DD CG

Atlantic 44 29 8

Pacific 40 18 10

2. ELEMENTARY ANALYSES: TWENTY-FOUR SEPARATE CASES

The standard procedure for testing whether the six months have a

common four point distribution can be found in any basic statistics text, e.g.,

Agresti (1990), and the test statistics have an asymptotic chi-squared
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distribution with 15 degrees of freedom when the null hypotheses are true.

Assuming independence of the 24 data sets, then if all null hypotheses are

valid, the p-values of the tests form a random sample from a Uniform (0,1]

distribution. This is a consequence of the probability integral transformation.

Thus, a test for the simultaneous validity of all 24 null hypotheses may b e

executed using a Kolmogorov-Smirnov test for uniformity of the distribution

of the p-values. Here, p stands for the empirical significance level (the

probability of a result at least as extreme if H0 were true).

The 24 test statistics appear in Table 3 below and their significance

numbers, in the form of 1-p, follow in Table 4. They too would be uniformly

distributed if all null hypotheses were true. They appear to be smeared

evenly over the unit interval. The Kolmogorov-Smirnov statistic is, for {p1 }

equal to the ordered values of p,

Dn=maxlpi-j/nI =.183 and Pr{' FnD,_>.183}=.401

and there is temptation to stop the analysis here.

TABLE 3. CHI-SQUARE VALUES FOR CASUALTY COUNTS
INDEPENDENT OF MONTH

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering

FF b 28.84 20.17 22.75 17.60

a 25.87 11.26 15.67 18.23

DD b 19.12 11.81 21.03 12.48

a 22.36 12.87 19.58 15.46

CG b 12.67 14.37 15.57 16.47

a 13.36 6.91 16.45 11.45
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At this level one should realize that failing to reject a particular model

does not preclude the acceptability of a competing model. Indeed, the power

of the chi-square goodness-of-fit procedure is not great. Accordingly we try

our luck with loglinear models that allow for variability of the casualty

frequency distribution by month. Moreover month is to be treated as a scored

ordinal variable. If an acceptable fit is achieved then we look for monotoniety

of change by month.

TABLE 4. SIGNIFICANCE (1-p VALUES) OF TABLE 3 STATISTICS

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering

FF b .983 .835 .910 .716

a .961 .266 .595 .749

DD b .792 .307 .864 .358

a .901 .388 .811 .581

CG b .372 .502 .589 .648

a .425 .040 .647 .280

It is interesting to note that the total number of ships constraint, see Table

2, has a profound effect upon the choice of model to be fitted. We bf gin with

the simplest.

Since we are treating the 24 tables separately, we drop all subscripts

except r and s for the time being. Let m, be the expected cell frequency;

adopt the simple ordinal scoring u = s for s = 1, ..., 6 and f) = 3.5. Consider

the loglinear model

log(mrs) = k + 3,(u, - U) (3)

7



with 2: 6, = 0, and r ranges 1,..., 4.

The total number of ships constraint requires that all

m+5 =N for s=l,...,6 (4)

where N is the appropriate number from Table 2. In terms of our model this

requires

m ,= es , ( U (5)

which can happen only if all 8, = 0. This in turn confiscates all usefulness of

the model. The same analysis leads to the rejection of the model

log(m s) ='U + a, + 6(u, - U). (6)

The simplest feasible model with months taken to be ordinal is

log(Ms) = y + a, + P3s + 8,(U,- U) (7)

with E a = E Ps = E , = 0. The cells means are estimated by iterated

proportional scaling. 2 The 24 chi-square goodness-of-fit test statistics appear

in Table 5 (12 degrees of freedom) and their significance values in Table 6.

2Computational support is discussed in Sections 3 and 4. Note that PROC
CATMOD of SAS Version 6.06 does not have a command to fit loglinear
models with ordinal explanatory variables. However, such a model can be fit
using PROC CATMOD by specifying the appropriate design matrix.
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Again the Kolmogorov-Smirnov procedure is performed for the 24

p-values, producing

Dn=maxlpj-j/nI =.173 and Pr{i1 D >_.173}= .472. (8)

Thus both models fit the data equally well.

Let us examine our estimates of the probability to see if the number

casualties estimated by the model decrease with time. Table 7 contains a

compilation of the probability of zero casualty reports for each month for

each of our 24 cases. In 22 of the cases the probabilities grow monotonically

by month, thus supporting our assertion. It also seems that the probabilities

for engineering casualties change more than those for nonengineering. It may

be curious to note that in the odd cases, engineering casualties after OPPE for

Pacific cruisers and destroyers, that the probabilities are strictly decreasing

with month. On the other hand, the probabilities of casualties (average

engineering and nonengineering), follow the asserted monotone increasing

pattern. It is instructive for the reader to compare the cumulative

distribution functions that result from fitting (7).

TABLE 5. GOODNESS-OF-FIT VALUES FOR THE LOGLINEAR MODEL

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering
FF b 10.68 8.88 9.22 11.44

a 14.74 8.88 13.16 12.16
DD b 10.55 8.55 11.61 14.00

a 6.82 5.92 15.87 9.06

CG b 12.40 13.17 12.62 18.83

a 8.38 13.12 14.71 10.68
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TABLE 6. SIGNIFICANCE (1-p VALUES) OF TABLE 5 STATISTICS

ATLANTIC PACIFIC
Engineering Nonengineering Engineering Nonengineering

FF b .443 .287 .316 .508
a .744 .287 .642 .575

DD b .432 .259 .522 .699
a .130 .080 .803 .302

C G b .582 .643 .603 .907
a .246 .639 .742 .443

TABLE 7. PROBABILITY OF ZERO CASREPTS LOGLINEAR MODEL

Engineering Nonengineering
FF b Atlantic .405 .487 .568 .645 .713 .772 .377 .422 .467 .511 .553 .594

Pacific .418 .472 .525 .575 .621 .664 .459 .495 .532 .566 .597 .626
a Atlantic .536 .576 .613 .647 .676 .701 .479 .498 .516 .532 .548 .563

Pacific .451 .479 .507 .535 .563 .590 .438 .468 .497 .524 .550 .574
DD b Atlantic .448 .512 .572 .627 .676 .718 .337 .364 .390 .416 .441 .465

Pacific .381 .476 .563 .632 .681 .711 .517 .539 .560 .577 .592 .604
a Atlantic .604 .662 .712 .755 .791 .821 .374 .414 .454 .494 .533 .570

Pacific .534 .532 .520 .500 .473 .441 .378 .416 .452 .483 .512 .537
CG b Atlantic .615 .695 .751 .789 .815 .835 .398 .461 .511 .542 .551 .538

Pacific .304 .353 .400 .444 .483 .517 .458 .524 .585 .638 .681 .714
a Atlantic .485 .606 .659 .707 .751 .790 .262 .290 .319 .238 .376 .404

Pacific .812 .786 .756 ./22 .684 .640 .315 .365 .414 .460 .503 .543

To conclude this section we note that, with a quick look at the p-values,

both models are defensible and the one that models the casualty distribution

as a function of time clearly supports our conjecture. We also know the

power of the statistical procedure is not high. More importantly, the 24 cases

are not independent. The cross classifications of before/after and

engineering/ nonengineering refer to the same ships. There are but six (fleet

by ship class) independent data sets.

10



3. A LOGLINEAR MODEL

The analysis in the previous section gives two separate acceptable

models, one indicating that temporal nearness to the OPPE exam has no effect

on the number of CASREPTs and a contradictory model indicating that

temporal nearness does indeed have an effect. A closer look at the 1-p-values

from Tables 4 and 6 help clear up this discrepancy and motivate the need to

consider the data as a whole. If the models fit, i.e. the p-values (or

equivalently the 1-p-values) form simple random samples from a Uniform

[0,1] distribution, then subsets of the p-values should also behave as simple

random samples from a Uniform [0,1] distribution. Figures 1 and 2 give box-

plots of the 1-p-values from Tables 6 and 8 respectively by ship type and by

casualty type. In Figure 1, there is clearly some effect that the first set of

models is not picking up. This effect (Figure 2) is given considerable relief

when temporal nearness is included in the models. We note that the

Kolmogorov-Smirnov procedure does not have power to detect all types of

departures from the null hypothesis. In particular it cannot detect patterns

such as those exhibited in Figure 1. (The independence assumption is

important.) From these figures we can conclude that temporal nearness is

indeed a variable that needs to be considered, and that there is interaction

between temporal nearness and the other variables.

In this section we treat the data as a whole, using a loglinear model in

order to get a better idea of the interaction between temporal nearness and the

other variables and their effect on the number of CASREPTs. The first step is

to choose the main effects and interaction terms for inclusion. There are

11



0 ,, CG "

~ENG "EF 0NON ENG
FF 00

Figure 1. Box Plots of 1-p-values from Table 5 by Ship Type and by
Casualty Type

several strategies, similar to model selection in regression settings, for doing

this (e.g., Agresti (1990)). Our strategy is motivated by the available software

as well as by certain aspects of the problem. Thus, an important feature of this

section is the computational difficulties and methods for solving them.

NON ENG

DO ENG01=- FF

0

0 '

cc

Figure 2. Box Plots of 1-p-values from Table 6 by Ship Type and by
Casualty Type

The cell counts are not realizations from a single multinomial distribution

since the number of ships by fleet is fixed, and the number of casualties is

reported for the same ships for both casualty types over the 12-month period

12



surrounding the OPPE. They can be modeled as realizations from several

multinomial distributions. In particular, for each i, j, k, 1, s the random

variables of the form

XijV(W..., Xj3s[ Xi1M+ s = Nil (9)

have multinomial distributions where Xijklrs is the random variable

corresponding to the observed frequency xi, 7MS. The natural inclination is to

take the likelihood to be the product of these multinomials and continue from

there. By doing this we are tacitly assuming that the number of casualties per

casualty type and month before and after OPPE are independent within each

ship type by fleet as well as between ship types and fleets. The disturbing

part of this assumption is that for each ship type by fleet, the same ships are

observed over the 12-month period surrounding the OPPE. If we had data by

ship, it might be possible to take into account potential dependence in the

number of casualties within a ship using a repeated measures design.

However, we don't have the data.

Some statistical packages such as SAS are able to maximize products of

multinomials, others are not. Birch (see Agresti (1990:p. 169)) showed that the

MLEs for a multinomial likelihood are the same as the MLEs for product

multinomials as long as the model contains a term for the marginal

distribution fixed by the sampling design. In this problem the number of

counts of ship by fleet by casualty type by month by before and after OPPE is

fixed. Thus designating the design factors and levels as follows

Factor No. Levels

Levels

A 2 Before/after OPPE i = 1, 2,

B 2 Atlantic, Pacific fleets, j 1, 2

13



C 2 Engineering, nonengineering casualty types, k = 1, 2
D 3 Frigates, Destroyers, Cruisers, I = 1, 2, 3

E 6 months measured from the time of OPPE s = 1, ... , 6

F 4 0, 1, 2, 3 or more CASREPTs, r = 1, 2, 3, 4

we can use a package that does not explicitly maximize the product of

independent multinomials by including the 5-way interaction term ABCDE.

The goal is to find a reasonable model that fits the data, but does not

include too many parameters. This is an iterative process somewhat similar

to stepwise regression. We begin by fitting the model with all main effects

and ABCDE (likelihood ratio = 663.67 with 562 degrees of freedom and a

p-value = .0019), and the model with main effects, all two-way interactions

and ABCDE (likelihood ratio = 496.52, with 488 degrees of freedom and a

p-value = .3850). The model with all two-way interactions appears to fit the

data. Thus, we use this model as a starting point and then eliminate

parameters sequentially until we get a model that is no longer suitable.

Backwards elimination is much easier and safer than forward selection if you

don't have a computer package that does some type of model selection.

Which terms to eliminate can be decided by looking at the output from one

run of the more expansive model. Forward selection requires that a new

model be fit for each term that you might want to add to the model., Starting

from the model with just main effects, we would need to make 15 runs to

decide which of the two-way interaction terms produces the greatest

improvement. SAS version 6.06 was used, even though it does not have a

stepwise model selection option, because it allows the inclusion of higher

order interaction terms such as ABCDE, without requiring that all lower

order terms be present.

We remove the terms with the highest p-value for the test of the null

hypothesis that the terms are insignificant. From the model with all two-way

14



interaction terms (see Table 8) we remove AB, AC, AD, AE, BC, BE, CD, CE

and DE. All have p-values > .8. Note that ABCDE is retained despite the fact

that it has a p-value = 1.0000. Even though including this term does not affect

the estimates of the other parameters, or the test statistics, it is needed to

provide the correct degrees of freedom for the model, 488 versus 498.

Changing the degrees of freedom from 488 to 498 alters the p-value for the

model rather drastically from 0.3850 to 0.6. After removing these terms we

have the model output given in Table 9.

The overall likelihood ratio test statistic changes slightly from 496.52 with

488 degrees of freedom to 497.19 with 520 degrees of freedom. This difference

0.67 with 12 degrees of freedom indicates that there is no real difference in the

fits of these two models. When eliminating more than one term it is important

to check the difference in the model fits. It could happen that in the presence

of all the other terms each term by itself is insignificant, but, that taken

together with the resulting model does not fit. This is exactly what happens

were we to remove all terms, (except ABCDE) with p-values > 0.3.

It is clear from the p-values in Table 9 that we are close to a final model,

thus we now remove terms one at a time. First A, then BF, then AF (see Tables

9-11) to get the model in Table 12. In Table 10 the p-value for B in the presence

of BF is 0.1195. However, once BF is eliminated, see Table 11, the p-value for B

is 0.0045 indicating that both B and BF are explaining the same variability in

the cell frequencies, and that it would have been a mistake to remove both of

them. No further terms can be eliminated from Table 12 with out significantly

changing the model fit. It is interesting to note that eliminating factor A

(before and after) has the effect of combining cells, i.e. eliminates the

subscipt i.

15



TABLE 8. ANALYSIS OF VARIANCE TABLE FOR THE MODEL WITH
ALL MAIN EFFECTS, ALL TWO-WAY INTERACTION TERMS, AND

THE ABCDE TERM

Source Degrees of Freedom Chi-square p-value
A (before and after OPPE) 1 0.31 0.5783

AB 1 0.00 0.9879*
AC 1 0.01 0.9384*
AD 2 0.02 0.9911*
AE 5 0.00 1.0000 °

AF 3 5.52 0.1376
B (Fleet) 1 2.35 0.1252

BC 1 0.03 0.86030
BD 2 44.94 0.0000
BE 5 0.04 1.0000*
BF 3 3.32 0.3447

C (Casualty type) 1 8.71 0.0032
CD 2 0.02 0.9881*
CE 5 0.54 0.9905*
CF 3 37.11 0.0000

D (Ship type) 2 564.98 0.0000
DE 10 0.02 1.0000*
CF 6 14.99 0.0203

E (Month) 5 10.87 0.0541
EF 15 60.85 0.0000

F (CASREPTs) 3 1022.61 0.0000
ABCDE 10 0.00 1.0000

Likelihood Ratio 488 496.52 0.3850

TABLE 9. ANALYSIS OF VARIANCE TABLE FOR THE MODEL OF
TABLE 8 EXCLUDING THE ASTERISKED TERMS IN TABLE 8

Source Degrees of Freedom Chi-square p- alue
A (before and after OPPE) 1 0.45 0.50 2*

AF 3 5.49 0.1391
B (Fleet) 1 2.42 0.1195

BD 2 44.93 0.0000
BF 3 3.25 0.3546

C (Casualty type) 1 11.14 0.0008
CF 3 36.53 0.0000

D (Ship type) 2 569.00 0.0000
CF 6 14.94 0.0208

E (Month) 5 13.39 0.0200
EF 15 60.28 0.0000

F (CASREPTs) 3 1030.18 0.0000
ABCDE 10 0.00 1.0000

Likelihood Ratio 520 497.19 0.7572
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TABLE 10. ANALYSIS OF VARIANCE TABLE FOR THE MODEL IN
TABLE 9 EXCLUDING THE AF TERM

Source Degrees of Freedom Chi-square v-value
AF 3 5.06 0.1677

B (Fleet) 1 2.42 0.1195

BD 2 44.93 0.0000

BF 3 3.25 0.3546*

C (Casualty type) 1 11.14 0.0008

CF 3 36.53 0.0000
D (Ship type) 2 569.01 0.0000

DF 6 14.94 0.0208

E (Month) 5 13.38 0.0200

EF 15 60.28 0.0000

F (CASREPTs) 3 1030.29 0.0000

ABCDE 10 0.00 1.0000

Likelihood Ratio 521 497.64 0.7624

TABLE 11. ANALYSIS OF VARIANCE TABLE FOR THE MODEL IN
TABLE 10 EXCLUDING THE BF TERM

Source Degrees of Freedom Chi-square p-value

AF 3 5.06 0.1677"

B (Fleet) 1 8.06 0.0045

BD 2 44.40 0.0000

C (Casualty type) 1 11.14 0.0008

CF 3 36.53 0.0000

D (Ship type) 2 568.85 0.0000

DF 6 14.39 0.0256

E (Month) 5 13.39 0.0200

EF 15 60.28 0.0000

F (CASREPTs) 3 1036.71 0.0000

ABCDE 10 0.00 1.0000

Likelihood Ratio 524 500.89 0.7593
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TABLE 12. ANALYSIS OF VARIANCE TABLE FOR THE FINAL MODEL

Source Degrees of Freedom Chi-square p-value

B (Fleet) 1 8.06 0.0045

BD 2 44.40 0.0000
C (Casualty type) 1 11.14 0.0008

CF 3 36.53 0.0000
D (Ship type) 2 568.85 0.0000

DF 6 14.38 0.0256
E (Month) 5 13.39 0.0200

EF 15 60.28 0.0000
F (CASREPTs) 3 1035.71 0.0000

ABCDE 10 0.00 1.0000
Likelihood Ratio 527 505.96 0.7377

The final loglinear model is

B C D E F BD CF~ DF EF ABCDE
lnpijklrs a + aj + ak+ al +a s+ ar + aOj + i + Ir +a + jiJkls

with the appropriate constraints on the parameters, and where Pijklrs would

represent the probability of an observation falling into cell i'klrs had we been

sampling from a single multinomial distribution. In our case, the parameters

of the 72 (because factor A is eliminated) individual multinomial

distributions, i.e. the distributions for the number of CASREPTs (0, 1, 2, 3 or

more) everything else (ijkls) being fixed, are

PrIijs = Pl forr=1 ... ,4.

, P ijrs

Since all terms not involving F cancel, the estimates of these probabilities are

18



F CF DF - EF

Prlijkzs - --- F, +&-CF + CDF E
rr

T

and are given in Table 13, as percentages. This tells us that given casualty

type, ship type and month that fleet has no effect on the distribution of the

number of CASREPTs. Because the final loglinear model has a BD interaction

term, it appears that differences in the fleets are due to the fact that the fleets

have a different mix of shiptypes (see Table 2). For each ship type by casualty

type by fleet, the estimated probabilities of no CASREPTs in a given month

are increasing with distance from the OPPE exam. The same cannot be said

for the estimated probabilities of three or more CASREPTs; these increase

then decrease with nearness to the OPPE exam. But this is due mostly to the

fact that probability functions must sum to one. When cumulative

distributions are compared, the monotonicity by month is (essentially)

supported. Across all ship types and months the estimated distribution for

Nonengineering CASREPTs is stochastically greater than for Engineering

CASREPTs.

The difference in the distributions of CASREPTs between ship types is

not so clearcut; frigates tend to have the fewest CASREPTs followed by

destroyers then cruisers. In this model, either casualty type or ship type

interact with the number of CASREPTs by month.

Fitting this type of loglinear model is not the only way to analyze this

data. In the next section a substantially different approach is used which

uncovers structure in the data not apparent from the analysis in this section.
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TABLE 13. ESTIMATES OF THE DISTRIBUTIONS OF THE NUMBER OF
CASREPTS BY MONTH, CASUALTY TYPE AND SHIP TYPE

Frigates, Engineering

1 2 3 4 5 6
0 52.06 53.84 57.57 58.72 64.17 69.89
1 28.63 26.61 22.25 22.79 20.40 17.45
2 11.42 11.55 1197 11.16 9.14 7.03

a3 7.88 7.99 8,21 1 7.32 6.29 5.62

Frigates, Nonengineering

1 2 3 4 5 6
0 42.54 44.21 47.77 49.06 54.86 61.18
1 32.10 30.07 25.41 26.20 24.01 21.02
2 14.56 14.80 15.49 14.55 12.19 9.60

23 10.71 10.91 11.53 10.18 8.94 8.20

Destroyers, Engineering

1 2 3 4 5 6
0 51.66 53.27 56.62 58.03 63.59 69.30
1 25.22 23.37 19.43 19.99 17.95 15.36
2 11.87 11.97 12.32 11.55 9.49 7.30

23 11.26 11.38 11.63 10.42 8.97 8.04

Destroyers, Nonengineering

1 2 3 4 5 6
0 41.79 43.29 46.44 48.00 53.88 60.16
1 28.08 26.14 21.93 22.75 20.93 18.35
2 14.98 15.18 1577 14.91 12.54 9.89

>3 15.15 15.39 15.86 14.34 12.64 11.60

Cruisers, Engineering

1 2 3 4 5 6
0 52.93 54.64 58.23 59.50 64.90 70.43
1 26.90 24.96 20.80 21.34 19.07 16.25
2 9.77 9.87 10.19 9.52 7-78 5.96

a3 10.40 10.53 10.78 9.64 8.25 7.36

Cruisers, Nonengineering

1 2 3 4 5 6
0 43.21 44.82 48.25 49.69 55.46 61.59
1 30.22 28.17 23.72 24.52 22.43 19.56
2 12.45 12.63 13.17 12.41 10.38 8.14

a3 14.13 14.37 14.86 13.39 1 1.74 10.71
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4. COMPARISON OF ENGINEERING AND NONENGINEERING

CASUALTY REPORTS

It is of interest to study the effects of the various factors upon the ratio of

engineering and nonengineering CASREPTs. The concern is that resources

may be diverted from nonengineering to engineering in order to prepare for

the OPPE. Also there may be a postexam recovery effect. The particular

technique chosen does not utilize the model developed in Section 3, but

represents an alternative form of analysis. It is instructive to explore this

alternative.

It begins with an attempt to simplify the data set by collapsing six

dimensions to five. Specifically, let

4
Yijk s  E (r-1) Xijkl.s

r=1

be the number of CASREPTs (more specifically a lower bound for the

number) recorded in before/after category i, fleet j, casualty type k, ship class

l in months; (i = l,'2;j = 1, 2; k = 1, 2; 1=- 1, 2, 3;s = 1, 2, ... ,.6).

These values have the advantage of containing no zeroes, having five

dimensions vice six, and not possessing any restricting marginal totals such as

those of Table 2. Thus, one might expect the data in this form to be simpler to

model. We shall see however that it is in fact more difficult to model. The

reason for this is that we do not have CASREPT information for the

individual ships; we only have data for the cross-classification of fleet by ship

class. In the cross-classified data, there are more CASREPTs for Atlantic

frigates than Atlantic destroyers because there are more frigates than
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destroyers in the Atlantic, etc. Many of the model effects estimated from this

data structure are devoted to representing this information.

An additional reason for collapsing the data is to gain experience in the

use of a second software system, specifically the categorical data analysis

portion of STATGRAPHICS by STSC. This is an interactive package that can

be used on PCs, features stepwise selection (both forward and backward)

modeling, and allows graphical study of the residuals. On the negative side,

this system treats only hierarchical models. If a certain interaction appears in

the set of generators then all main effects and lower order interactions that can

be constructed from the given generator must also appear in the model. Thus

it is not possible to include an isolated high order interaction term for the

purpose of treating a design constraint, as was done in Section 3. The factors

and levels are designated as in Section 3.

It is instructive to relate some experiences in the artwork of modeling:

The TEST ORDER option leads one to explore models containing 3-way

effects. This done, the use of BACKWARD SELECTION is exploited to

produce models that fit adequately and are parsimonious in terms of the

number of effects included. This leads to the consideration of thte model

having generators

ABD ACD BCE BDE.

The fitting information for this set is

Value d.f. p

Likelihood Ratio chi-square Q1 .0713 85 .3056

Pearson chi-square 85.4251 85 .4667
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This model fits the data reasonably well and was chosen for further study to

look for potential outliers and patterned residuals. Use of the STATGRAF

plotting options on the standardized residuals reveal two outliers: (i) a value

of -2.33 for Pacific cruisers, nonengineering, 5 months before the OPPE, and

(ii) a value of 3.015 for Atlantic frigates, engineering, 6 months after the OPPE.

An effort was made to improve the model by adding interaction terms even

though these outliers were not especially severe. Also, the normal probability

plot of residuals pointed to the possibility of improvement.

Accordingly, some additional exploration was performed and it was

decided to include the ACE interaction term in the generators. This term

alone costs 5 degrees of freedom and, because of the hierarchical nature of the

algorithm, an additional 5 degrees of freedom are added for the AE

interaction that must be included. Thus the finalized set of generators is

ABD ACD ACE BCE BDE

and the fitting summary is

Value d.f. P

Likelihood Ratio chi-square 79.2540 75 .3463

Pearson chi-square 73.1462 75 .5391
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The full loglinear model is

A B C D Eln(mijkls) = ;" + Xi + 'I + X'k + Xi" + ;LS

AB AC AD AE BC BD BE CD CE+ A ij + "i + Ail + ;is + jh +Ajil  +A* +;js

ABD ACD ACE xBCE BDE
ij + 'ihi ihs + ihs + AjIs

where m ijks= E [Yijk , for i = 1, 2; j = 1, 2; k = 1, 2; 1 = 1, 2; s = 1, ... , 6, and the

usual caveats for effects and interactions summing to zero. Plots of

standardized residuals versus fitted values and Normal probability plots

appear in Figure 3.

This fitted model will be used to study the behavior of log odds of

engineering and nonengineering casualties. The induced model is

ln[ = + az + i3j + y + Si,+0.

which is not too overbearing. We must include the constraints a i = f3i
i J

- i i ~ 6, 01s~ 861s=O0for all ij,1, s. Positive values
s j s

for the log odds mark engineering CASREPS as being favored (more

prominent) and negative values favor the nonengineering type. Of course this

represents a filtering of information, and the original model cannot be

recovered from it.

24



1 .7......... ........... ... ........ .............. .......... ............

1.7.

-40.3 _

- 1 .3 ........ ........ ........ -. ............................

-2 .3 .. .. ..........................±. ~
0 10 20 3040- 50 60

expected count

99.9 ...... .........

95

5........

0 . ................. .....

_ _ _ _........ ........ ...__ _ ..........__ _ _ _ _ ...

-2.3 -1.3 -0.3 0.7 1.7 2.7
standardized residual

Figure 3. Plots of the Standardized Residuals vs. the Expected Counts and
the Normal Probability Plots for the Final Model
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The effects are readily identified as

c AC BC ACD ACE BCE

The figures show the six-month time traces of the log odds for before and

after crossed by the three ship classes; Figure 4 treats the Atlantic fleet data

and Figure 5 treats the Pacific. For both fleets the traces are generally parallel

and the post-OPPE curves are below the pre-OPPE curves.
Before, FF

', r_ _ _ _ ,Before, DO
6. * '" Before, CG

After. FF
After, DO

0.3,

--. _...After CG

-. * * ---"-* -. ..... .........

o° .o 5 a

. ... ......... ... . .

. . .. . . . . ..

-- - - -- - - --C

S 1 2 3; 4 • S

Figure 4. Traces of the Log Odds versus Month from OPPE for the Atlantic
Fleet by Before/After and Ship Type

Thus, the transfer of resources effect might be associated with an

imbalance of CASREPTs 2 to 5 months after OPPE for the Atlantic fleet; and I

to 4 months after for the Pacific fleet. For both fleets, the curves for cruisers

are sharply separated in the before and after effect. The curves for the
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destroyers show a bit less separation, and those for frigates even less. In fact

the pre- and post-frigate curves actually intersect.
Before, FF
Before, DO

o. -4 ..---. .~ Before, CG --
After. FFi ......... i .... After. 00 ,

i ....... . !After CG ,

- --------

..................-- --------

* . . 9 - -

- ~ i_______I I °

* a

Figure 3. Traces of the Log Odds versus Month from OPPE for the Pacific
Fleet by Before/After and Ship Type

These results are not inconsistent with those of Section 3. An estimate of a

lower bound for the expected number of CASREPTs can be found from Table

13 by

4
1(r - ) P, I1

r=1

for each i'kls. The traces of the log odds are given in Figure 6. Because the

Before/After variable was dropped, pre-OPPE and post-OPPE curves are not

available. Also, Atlantic and Pacific Fleet curves would be identical. Even

-



though the interactions between casualty type and month, ship type, casualty

type and month did not appear in the loglinear model of Section 3, these

interactions are obvious from the traces of the estimated expected number of

CASREPTs.

0 
0

?

Month from OPPE

Figure 6. Log Odds vs. Month from OPPE by Ship Type

3. CONCLUSIONS

From the analysis in the previous sections a few things stand out. First,

failing to reject a particular model does not mean that it actually fits the data.

Different approaches to analyzing the same data can often uncover new

relationships. Second, in the analysis in sections 3 and 4 we proceeded as if

there was more data than there actually was. In fact, 157 different ships were

observed, with only 8 Atlantic Fleet cruisers and 10 Pacific Fleet cruisers.
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Thus, although it is clear that CASREPTs tend to increase with proximity to

the OPPE exam, that the ratio of engineering to nonengineering CASREPTs

tends to decrease with proxmity, and that there appears to be a difference

between the three ship types, some of the finer distinctions may be due to

sampling error. Finally, we did not find one statistical package that could

easily handle all aspects of this analysis. All had their drawbacks.
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APPENDIX A. SAS CODE

The following code is an example of the Job Control Language (JCL) and

SAS commands that can be used to fit the loglinear model whose parameter

estimates are given in Table 12 on MVS at the Naval Postgraduate School. For

a detailed explanation of using SAS on MVS see Davis (1990). In this

particular example, the data is entered as it appears in Tables 18 and 19,

Klingseis (1979). Entering the data in this format necessitates the rather

intricate DATA statement. PROC CATMOD is used to fit the loglinear

model. Rather than use the POPULATION statement to get maximum

likelihood estimates for a product multinomial likelihood, the term

SHIP*CASTYPE*FLEET*BA*MONTH is included and a single multinomial

likelihood is maximized. Two files are created, loglin listing sent to the users

reader which contains the output from PROCCATMOD and a SAS file

PRED.SAS which includes the SAS data set PRED.RESID. Among other

things, this data set contains the estimated and observed cell probabilities

which can be used to get the standardized residuals. Other SAS PROCs are

then used to table and plot these residuals.

FILE: MCAMPLE SAS A

//LOGLIN JOB (5096,9999),'L "WHITAKER',CLASS=J
// EXEC SAS606,REGION=7000K
1IN1 DD DSN=MSS.F4077.SAS12,USA,DISP=SHR
//RESID DD DISP=(NEW,CATLG,DELETE) ,.UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=40,BLKSIZE=23440) ,SPACE=(23400, (I,2i)),
/ISYSIN DD *
TITLE 'FINAL MODEL';
DATA RESID.OPPE;

FORMAT CHARV $5. FLEET $I. SHIP $2. BA S. NCAS $5.;
INPUT CIARV $;
FLEET=SUBSTR(C4ARV, 1,1);
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SHIP=SUBSTR(CHARV, 2,2);
1F LENGTH(CHARV)=4 THEN CASTYPE = 'N';ELSE CASTYPE='E';
BA=SUBSTR(CHARV.LENGTH(CHARV) ,1);
DO NCAS= 'ZERO', 'ONE', 'TWO','3PLJS';

DO MONTH= 1, 2, 3, 4, 5, 6;
INPUT COUNT @;
IF COUNT=0 THEN COtNT1lE-20;
OUTPUT;

END;
INPUT;

CARDS;
PFFEX
18 19 20 21 25 28
7 10 8 14 6 7

PFFX
21 19 19 21 24 27
14 15 13 11 6 9

PDDEX
8 7 11 10 13 13
5 74 21 1

L CG Y

PROC CATMOD DATA=RESID.OPPE ORDER=DATA;
WEIGH'! COUNT;
RESPONSE / OUT=RESID.PR.ED(

KZEP=NCAS SHIP FLEET CASTYPE MONTH _PRES_ _CBS_ _RESID_ -TYPE-
-SEOBS_ _SEPRED-2;

MODEL NCAS*BA*SHIP*MONTrH*FLE.ET*CASTYPE=_RESPONSE_
/NODESIGN NOPROFILE NORESPONSE;

LOGLIN NCASISHIP42
SHIP*FLEET FLEET
MONTH*NCAS MONTH

SHIP*BA*MONTH* FLEET*CASTYPE;
RUN;
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APPENDIX B. MAXIMUM LIKELIHOOD ESTIMATION FOR

CENSORED GEOMETRIC AND POISSON DISTRIBUTIONS

The frequency counts fl, ...,f4 represent the number of ships reporting 0, 1,

2, 3 or more casualties, respectively. These are right censcired data and the

censoring influences the maximum likelihood estimation method. Indeed the

estimators developed below (or their equivalents) are necessary to support

the chi-square test statistics used in goodness-of-fit testing. Both the

Geometric and Poisson distributions are candidates to model these

frequencies. It is natural to default to the familiar distributions. What follows

is an analysis of goodness-of-fit testing when these two distributions are fitted

to the frequency counts, pooled over the six months, and treated as 24

separate experiments as in Section 2.

Geometric. Consider the censored geometric probability function

pi=qp' for j=0,1 ... c-1,¢ (B.1)

PC = P
Pc=P

C

and p + q = I. The data consists of counts fo, fl, ... , f and let N = fj
0

We proceed to develop the likelihood function, its logarithm, and the

maximum likelihood equations.

L(p)= =P/ [qyijpc
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c-I c-I
ln(L) = 1fjn(q)+ ifj n(p) = (N-f,) 1n(q)+S n(p)

0 0

C

where S = 4 ). Then

j=0

N-f, S
4 Pp-q + p

which is set to zero. The solution for p is the maximum-likelihood estimator

P = S/(S+N-fc) (B.2)

Poisson. The censored Poisson probability function is

pi = e-A! /j! for j = 0 .... c-1

c-1 (B.3)
P,: = I- p1.j=o

0c

C
Again fo,fo, ..., f, are the counting data and N = The general structure of

0
the likelihood system is

C

(P n(L)YX
0
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C f;p

0 pi

The components of this system are best treated with the following technique.

OP, -e = -PO = P-1-Po if p-1 = Oby convention.

,= eL(j-)!j = P.i--P1  for j = c-1

43X 1 ap. Ec-i P-1 P-

0 0

Then

p -x - forj= 0, ... ,c-1Pj ax, -Pj

p 02,- p

These quantities are then placed into spaces giving the structure
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-1 P-1 + Pc-1

(B.4)

0

It is required to solve 9, = 0 for A. This equation is nonlinear and explicit

solution is not possible. Newton-Raphson iteration works quite well

however. To execute it let g(A) = (p, and evaluate the derivative

C-1 c-i 2

g'() =- f/A 2 + /) c-2Pc--P c-I/Pc

because a = Pc-2-Pc-1, and -A.= pc-,"

The Newton-Raphson iteration formula is

A .- A-g()/g'(;) (B.5)

and it can be initiated with A0 = Y jr). Stop when I g(x)I < E for some user

defined e> 0. 0

Tables 14 through 17 show the results of fitting the geometric distribution

(B.1) to the 24 cases. The estimates for p and -ln(p) are both tabled; p is the

probability of zero CASREPTs and -ln(p) can be compared to the A estimates

for the Poisson model. (These are not to be confused with the significance

values.) Both Pearson and likelihood ratio chi-square test statistics are listed

in Table 15. Generally the tests fail, but for different reasons. This accounts
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for the large differences in values. Table 16 shows that all but a handful of the

tests fail.

Table 17 through 19 show similar results for the Poisson model (B.3). The

format is the same and generally so are the results. The two models do not

agree with the data, or with each other.
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Fitting the Geometric Distribution

TABLE 14. MAXIMUM LIKELIHOOD ESTIMATES FOR p/-ln(p)

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering

FF Before .416/ .88 .494/ .71 .479/ .74 .436/ .83

After .380/ .97 .486/ .72 .471/ .75 .495/ .70

DD Before .451/ .80 .574/ .55 .472/ .75 .487/ .72

After .317/ 1.15 .492/ .71 .500/ .69 .567/ .57

CG Before .364/ 1.01 .533/ .63 .539/ .62 .394/ .93

After .303/ 1.19 .606/ .50 .325/ 1.12 .509/ .67

TABLE 15. PEARSON/LIKELIHOOD RATIO CHI-SQUARE (2)
GOODNESS-OF-FIT VALUES

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering

FF Before 4.5/ 19.7 9.3/ 40.5 15.1/ 38.0 5.9/ 22.6

After 1.8/ 12.7 9.0/ 37.0 6.1/ 28.8 4.8/ 33.2

DD Before 31.2/ 37.3 18.0/ 51.9 6.8/ 16.8 20.9/ 27.7

After 10.0/ 11.6 6.7/ 25.9 2.5/ 15.7 21.2/ 38.4

CG Before 9.4/ 13.0 14.0/ 17.4 8.4/ 16.3 4.9/ 7.1

After 1.3/ 2.0 15.2/ 23.2 3.3/ 4.8 3.2/ 11.0

TABLE 16. SIGNIFICANCE (1-p VALUES)

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering

FF Before .896/ 1.00 .991/ 1.00 1.000/ 1.00 .947/ 1.00

After .596/ 1.00 .989/ 1.00 .952/ 1.00 .911/ 1.00

DD Before 1.000/ 1.00 1.000/ 1.00 .967/ 1.00 1.000/ 1.00

After .993/ 1.00 .965/ 1.00 .709/ 1.00 1.000/ 1.00

CG Before .991/ 1.00 .999/ 1.00 .985/ 1.00 .915/ .97

After .465/ .64 .999/ 1.00 .807/ .91 .801/ 1.00
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Fitting the Poisson Distribution

TABLE 17. MAXIMUM LIKELIHOOD ESTIMATES FOR e-,I2/

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering

FF Before .738/ .478 .937/ .392 .846/ .429 .767/ .464

After .665/ .514 .925/ .396 .875/ .417 1.026/ .359
DD Before .621/ .537 1.194/ .303 .882/ .414 .748/ .473

After .458/ .632 .929/ .395 1.018/ .361 1.093/ .335

CG Before .669/ .512 .818/ .441 .964/ .381 .542/ .582
After .475/ .622 1.173/ .309 .609/ .544 1.005/ .366

TABLE 18. PEARSON/LIK RATIO CHI-SQUARE (2) GOODNESS-OF-FIT
VALUES

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering

FF Before 26.5/ 26.3 18.3/ 18.0 40.7/ 38.3 15.7/ 15.1

After 19.4/ 19.6 29.0/ 29.2 19.2/ 19.0 25.6/ 25.2

DD Before 99.9/ 56.3 15.8/ 15.7 19.8/ 20.6 49.2/ 35.6

After 36.5/ 26.4 9.3/ 9.2 10.4/ 10.4 26.7/ 26.5

CG Before 18.0/ 22.6 29.1/ 19.3 9.2/ 7.5 15.9/ 9.1

After 1.1/ 1.1 9.9/ 8.2 11.3/ 13.0 2.1/ 2.1

TABLE 19. SIGNIFICANCE (1-p VALUES)

ATLANTIC PACIFIC

Engineering Nonengineering Engineering Nonengineering

FF Before 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00
After 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00

DD Before 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00

After 1.00/ 1.00 .99/ .99 .99/ .99 1.00/ 1.00

CG Before 1.00/ 1.00 1.00/ 1.00 .99/ .98 1.00/ .99

After .41/ .43 .99/ .98 1.00/ 1.00 .64/ .65
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